MINUTES OF THE TAC MEETING OF THE WOOD RIVER WATERSHED ADVISORY GROUP

CAREY CITY HALL TUESDAY, SEPTEMBER 28, 2004

Chairman Daryle James called the meeting to order with the following in attendance:

Daryle James Chuck Pentzer - ISCC
Bob Simpson - City of Carey Bill Davis - CAFO
Kevin Davidson - NRCS Jennifer Claire - IDEQ

Jennifer Claire gave a presentation on the Little Wood River Subbasin, dated September 28, 2004.

The presentation included:

Pollutants in Little Wood River Subbasin: sediment, bacteria, nutrients, possibly temperature

Flow altered streams in the Little Wood River Subbasin:

Little Wood River Reservoir Fish Creek Reservoir

Little Wood River Segment #3 Fish Creek below the reservoir

Little Wood River Segment #4 Dry Creek

TMDLs for Fish Creek above the Reservoir

SEDIMENT

Critical time period = April to June

Critical Flow = 69.7

Existing Load = 775.4 t/yr

Background Load = implicit

MOS Load = implicit

Total Available Load = 106.5 t/yr

Wasteload Allocation = 2.1 t/yr

Load Allocation = 104/4

% reduction = 86.3%

BACTERIA

Critical Time period = July to September

Critical Flow = 15.3 cfs

Existing Load = 604 col/100 ml

Background Load = 23 col/100ml

MOS Load = 57.6 col/100ml

Total Available Load = 495.4 col/100ml

Wasteload Allocation = 9.9 col/100ml

Load Allocation = 104.4 col/100ml

% reduction = 14.2%

NUTRIENTS

Critical period = July to September

Critical Flow = 15.3 cfs

Existing Load = $6.10 \, \text{lbs/day}$

Background Load = 1.65 lbs/day

MOS Load = 0.41 lbs/day

Total Available Load = 2.06

Wasteload Allocation = 0.04 lbs/day

Load Allocation = 2.02 lbs/day

% reduction = 39.2

TMDLs for Fish Creek Below the Reservoir

NUTRIENT

Critical time period = July to September Critical Flow = 33.5 cfs Existing Load = 21.5 lbs/day Background Load = 2.1 lbs/day MOS Load = 1.8 lbs/day Total Available Load = 14.2 lbs/day Wasteload Allocation = 0.3 lbs/day Load Allocation = 13.9 lbs/day % reduction = 24.4%

SEDIMENT

Critical time period = April to July Critical Flow = 82.8 cfs Existing Load = 102.2 t/yr Background Load = implicit MOS Load = implicit Total Available Load = 25.2 t/yr Wasteload Allocation = 0.5 t/yr Load Allocation = 24.7 t/yr % reduction = 75.3%

TMDLs for Dry Creek

SEDIMENT

Critical time period = April to June Critical Flow = 6.5 cfs Existing Load = 286.8 t/yr Background Load = implicit MOS Load = implicit Total Available Load = 52.0 t/yr Wasteload Allocation = 1.0 t/yr Load Allocation = 51.0 t/yr % reduction = 81.9%

TMDLs for Little Wood River #4

NUTRIENTS - UPPER (#1)

Critical time period = June to September Critical Flow = 131.9 cfs Existing Load = 16.4 lbs/day Background Load = 14.2 lbs/day MOS Load = 1.64 lbs/day Total Available Load = 0.50 lbs/day Wasteload Allocation = 0.01 lbs/day Load Allocation = 0.49 lbs/day % reduction = 10.0%

NUTRIENTS - LOWER (#2)

Critical time period = June to September Critical Flow = 483 cfs Existing Load = 541.5 lbs/day Background Load = 59.9lbs/day MOS Load 26.0 lbs/day Total Available Load = 174.4 lbs/day Wasteload Allocation = 52.6 lbs/day Load Allocation = 118.3 lbs/day % reduction = 56.7%

SEDIMENT

Not available

Cold Water Aquatic Life Maximum Temperatures are Elevated on:

Fish Creek Above the Reservoir

Muldoon Creek

Little Wood River – Segment 1

Little Wood River – Segment 4

Salmonid Spawning Temperatures are Elevated on:

Fish Creek Above the Reservoir Little Wood River – Segment 1 Little Wood River – Segment 4 Muldoon Creek Loving Creek

Pollutants in the Camas Creek Subbasin: Nutrients, Bacteria Sediment

Flow altered creeks in the Camas Subbasin:

Camas Creek
Camp Creek
Wildhorse Creek
Elk Creek
Corral Creek
Mormon Reservoir

Streams to be removed from the list in impaired waters:

Beaver Creek, Willow Creek, Little Beaver Creek

Sediment Only TMDLs - Critical time period – March to May

Elk Creek Corral Creek

Existing Load = 148.9 t/yr Total Available Load = 99.4 t/yr Wasteload Allocation = 2.0 t/yr Load Allocation = 97.4 t/yr

Existing Load = 128.5 t/yr Total Available Load = 48.9 t/yr Wasteload Allocation = 1.0 t/yr

Load Allocation = 47.9 t/yr

Camp Creek

Existing Load = 320.1 t/yr Total Available Load = 100.6 t/yr Wasteload Allocation = 2.0 t/yr Load Allocation = 98.6 t/yr

Soldier Creek

Existing Load = 817.5 t/yr Total Available Load = 142.5 t/yr Wasteload Allocation = 2.9 t/yr Load Allocation = 139.7 t/yr

McKinney Creek

Existing Load = 6,323 t/yr Total Available Load = 81.5 t/yr Wasteload Allocation = 1.6 t/yr Load Allocation = 79.9 t/yr

Cow Creek TMDLs

NUTRIENTS

Critical time period = March to June Critical Flow = 6.4 cfs Existing Load = 34.8 lbs/day Background Load = 0.69 lbs/day MOS Load = 0.17 lbs/day Total Available Load = 0.86 lbs/day Wasteload Allocation = 0.02 lbs/day Load Allocation = 0.85 lbs/day

Wildhorse Creek TMDLs

BACTERIA

Critical time period = June to September Existing Load = 2,500 col/100/ml Background Load = 2 col/100ml MOS Load = 57.6 col/100ml Total Available Load = 516.4 col/100ml Wasteload Allocation = 10.3 col/100ml Load Allocation = 506.1 col/100ml

Camas Creek TMDLs

NUTRIENTS

Critical time period = June to September Critical Flow = 47 cfs Existing Load = 26.9 lbs/day Background load = 5.1 lbs/day MOS Load = 1.3 lbs/day Total Available Load = 6.3 lbs/day Wasteload Allocation = 0.1 lbs/day Load Allocation = 6.21 lbs/day

Dairy Creek TMDLs

NUTRIENTS

Critical Time period = March to June Critical Flow = 6.0 cfs Existing Load = 2.7 lbs/day Background load = 0.65 lbs/day MOS Load = 0.16 lbs/day Total Available Load = 0.81 lbs/day Wasteload Allocation = 0.02 lbs/day Load Allocation = 0.79 lbs/day

SEDIMENT

Critical time period = March to May Existing Load 90.5 t/yr Total Available Load = 17.7 t/yr Wasteload Allocation = 0.4 t/yr Load Allocation = 17.3 t/yr

SEDIMENT

Critical time period = March to May Existing Load = 49.0 t/yr Total Available Load = 34 lbs/day Wasteload Allocation = 0.7 lbs/day Load Allocation = 33.3 lbs/day

SEDIMENT

Critical time period = March to May Existing Load = 8,234.0 t/yr Total Available Load = 725.8 lbs/yr Wasteload Allocation = 14.5 lbs/yr Load Allocation = 711.3 lbs/yr

SEDIMENT

Critical time period = March to May Existing Load = 1,745 t/yr Total Available Load = 62.1 t/yr Wasteload Allocation = 1.2 t/yr Load Allocation = 6.9 t/yr

STREAM BANK EROSION INVENTORIES September 28, 2004

Methodologies: There are many methodologies for determining stream bank erosion. This one developed from Corps of Engineers workshop in California. NRCS began using this method. It estimates length, height, and recession rates of erosion.

80% Stability: Targets of 80% stream bank stability:

- Salmon-Challis Forest Management Plan
- Salmon Challis Annual Monitoring Plan
- Inventory of Natural Conditions in the Salmon River Basin

80% stability found in range of channel types and stream orders

Land properly managed for sheep and cattle grazing exhibit 80% bank stability or higher:

- Viewed on lands around Henry's Lake
- Viewed on public lands that have been appropriately managed

Erosion methodology comparisons

Stream bank Erosion Inventory

V

Rosgen's Bank Erosion Hazard Index

- parallel one another
- Rosgen's Bank Erosion Hazard Index yields higher numbers

Viewing Stream bank Erosion Loads

- View it as a way to prioritize implementation projects
- These are estimates not exact numbers
- Bight side: We could be using the Rosgen numbers and be working with larger numbers

Stream Bank Erosion Calculations:

Average Bank Height

- Average of erosive and non erosive banks
- Percent of Eroding Stream Bank

Erosive bank length

Divided by segment

- Bank erosion over sampled reach

Eroding area

Times

Recession rate

Times

Bulk density

Erosion rate

- Bank erosion over sampled length
- Divided by
- the quality

total inventoried length divided by 5280

Eroding bank extrapolation

- Feet of similar stream length
- Times
- Inventoried length
- Times
- Percent eroding bank
- Times
- _ 2

Total stream bank erosion

- The quantity of
 - The quantity
 - total inventoried length
 - plus
 - feet of similar stream length
 - divided by
 - 5280
- times
- erosion rate

Stream Bank Erosion Reduction Calculations

Bank erosion over sampled reach

- The quantity
 - total inventoried bank
 - times 2
 - times 0.2
 - times average height
- times
- rate recession
- times bulk density

Erosion rate

- Bank erosion over sampled reach
- Divided by
- The quantity
 - total inventory length
 - times 5280

Bank erosion over sampled reach

- The quantity
 - total inventoried bank
 - times 2
 - times 0.2
 - times average height
- times
- rate recession
- times bulk density

Erosion rate

- Bank erosion over sampled reach
- Divided by
- The quantity
 - total inventory length
 - times 5280

Feet of similar stream length

Total stream bank erosion

- Total quantity
 - total inventoried length plus
 - feet of similar type
- divided by
- 5280
- times
- erosion rate

60% Stability Lower

Stream Bank Erosion Calculations = 0.60

Ave. Bank Height: = 2.00 feet

Bank to bank Eroding Seg. Length = 800.00 feet

Percent eroding bank = 0.40

Bank erosion over sampled reach (E) = 6.48 tons/year/sample reach

Erosion Rate (ER) = 34.21 tons/mile/year

Feet of Similar Stream Type = 3000.00 feet

Eroding bank extrapolation = 3200.00 feet

Total stream bank erosion = 25.92 tons/year

Stream Bank Erosion Reduction Calculations

Bank erosion over sampled reach (E) = 1.80 tons/year/sample reach

Erosion Rate (ER) = 9.50 tons/mile/year

Feet of Similar Stream Types = 3000.00 feet

Eroding bank extrapolation = 1600.00 feet

Total stream bank erosion = 7.20 tons/year

80% Stability Upper

Stream Bank Erosion Calculations = 0.80

Ave. Bank Height: = 2.00 feet

Bank to bank Eroding Seg. Length = 400.00 feet

Percent eroding bank = 0.20

Bank eroding over sampled reach (E) = 3.24 tons/year/sample reach

Erosion Rate (ER) = 17.11 tons/mile/year

Feet of Similar Stream Type = 3000.00 feet Eroding bank extrapolation = 1600.00 feet

Total stream bank erosion = 12.96 tons/year

Stream Bank erosion Reduction Calculations

Bank erosion over sampled reach (E) = 1.80 tons/year/sample reach

Erosion Rate (ER) = 9.50 tons/mile/year

Feet of Similar Stream Types = 3000.00 feet

Eroding bank extrapolation = 1600.00 feet

Total stream bank erosion = 7.20 tons/year

Summary Outcomes

Reach	Existing		Proposed			
	Erosion Rate (t/mi/y)	Total Erosion (t/y)	Erosion Rate (t/mi/y)	Total Erosion (t/y)	Erosion Ra	% of
Upper	17.1072	12.96	9.504	7.2	44	33.3
Lower	34.2144	25.92	9.504	7.2	72.2	66.7
	Total Erosion (t/y)	38.88		14.4		

1.0 Foot Bank Height Upper

Stream Bank Erosion Calculations

Ave. Bank Height = 1.0 feet

Bank to bank eroding Seg. Length = 800.0 feet Percent eroding bank = 0.4

Bank erosion over sampled reach (E) = 3.2 tons/year/sample reach Erosion Rate (ER) = 17.1 tons/mile/year Feet of Similar Stream Type = 3000.0 feet

Eroding bank extrapolation = 3200.0 feet

Total stream bank erosion = 13.0 tons/year

Stream Bank Erosion Reduction Calculations

Bank erosion over sampled reach (E) = 0.9tons/year/sample reach

Erosion Rate (ER) = 4.8 tons/mile/year

Feet of Similar Stream Types = 3000.0 feet

Eroding bank extrapolation = 1600.00 feet

Total stream bank erosion = 3.6 tons/year

2.0 Bank Height Lower

Stream Bank Erosion Calculations

Ave. Bank Height = 3.0 feet

Bank to bank Eroding Seg. Length = 800.0 feet

Percent eroding bank = 0.4

Bank erosion over sampled reach (E) 9.7 tons/year/sample reach

Erosion Rate (ER) = 51.3 tons/mile/year

Feet of Similar Stream Type = 3000.0 feet Eroding bank extrapolation = 3200.0 feet

Total stream bank erosion = 38.9 tons/year

Stream Bank Erosion Reduction Calculations

Bank erosion over sampled reach (E) = 2.7 tons/year/sample reach

Erosion Rate (ER) = 14.3 tons/miles/year

Feet of Similar Stream Types = 3000.0 feet

Eroding bank extrapolation = 1600.0 feet

Total stream bank erosion = 10.8 tons/year

Bank Height Summary Outcome

Reach	Existing Proposed					
	Erosion Rate (t/mi/y)	Total Erosion (t/y) Erosion	on Rate (t/mi/y)_	Total Erosion	% reduction	Percent of total
Upper	17.1	13.0	4.8	3.6	72.2	25.0
Lower	51.3	38.9	14.3	10.8	72.2	75.0
	Total Erosion (t/y)	51.8		14.4		

Recession Rates Lower

Stream Bank Erosion Calculations

Ave. Bank Height = 1.0 feet

Bank to bank Eroding Seg. Length = 400.0 feet Percent eroding bank = 0.2

Bank erosion over sampled reach (E) = 9.0 tons/year/sample reach Erosion Rate (ER) = 47.5 tons/mile/year Feet of similar stream type = 3000.0 feet

Eroding bank extrapolation = 1600.0 feet

Total Stream bank erosion = 36.0 tons/year

Stream Bank Erosion Reduction Calculations

Bank erosion over sampled reach = 0.9 tons/year/sample reach

Erosion Rate (ER) = 4.8 tons/mi/yr Feet of Similar Stream Types = 3000.0 feet

Eroding Bank extrapolation = 1600.0 feet

Total stream bank erosion = 3.6 tons/year

Recession Rates Upper

Stream Bank Erosion Calculations

Ave. Bank Height = 1.0 feet

Bank to bank Eroding Seg. Length = 400.0 feet

Percent eroding bank = 0.2

Bank erosion over sampled reach (E) = 1.0 tons/year/sample reach

Erosion Rate (ER) = 5.2 tons/mile/year

Feet of Similar Stream Type = 3000.0 feet

Eroding Bank extrapolation 1600.0 feet

Total Stream Bank Erosion = 4.0 tons/year

Stream Bank Erosion Reduction Calculations

Bank erosion over samples reach = 0.9 tons/year/sample reach

Erosion Rate (ER) = 4.8 tons/mile/year

Feet of Similar Stream Types = 3000.0 feet

Eroding bank extrapolation = 1600.0 feet

Total stream bank erosion = 3.6 tons/year

Recession Rates Summary Outcomes

Reach	Existing	Prop	osed			
	Erosion Rate (t/mi/y)	Total Erosion (t/y) Erosi	on Rate (t/mi/y) To	otal Erosion(t/y)	Erosion Rate % Red:	% of total
Upper	5.2	4.0	4.8	3.6	9.1	9.9
Lower	47.5	36.0	4.8	3.6	90.0	90.1
	Total Erosion (t/y)	40.0		7.2		

where upon the meeting was adjourned.	
Daryle James, Chairman	